您现在的位置:首页»师资队伍»系别»计算机系»

李帮庆 Li Bang-Qing

作者: 计算机与信息工程学院  |  发布日期:2017-03-21 16:46:00  |  阅读次数:

姓名:李帮庆

部门:北京工商大学计算机与信息工程学院计算机系

职称职务:副教授

主要研究领域:工程应用中的高可信算法、信号恢复算法、图像重建算法等

主讲课程:数据库应用基础、C/C++程序设计、计算机文化等

教育背景:博士

获奖及荣誉:省级优秀论文奖1, 省级科技制作奖1项等

主要学术成果:

近年来在工程与科学中的高可信息计算算法方面开展了一系列研究。共发表学术论文50余篇,其中近20篇发表在国际期刊上,总影响因子20多,被他引30余次。主持北京教委项目1项,主持完成横向课题和参与完成省部级项目多项。获软件著作权6项。

代表性论文:

[1] Li BQ, Ma YL, etc., The folded soliton with periodic vibration for a nonlinear coupled Schrödinger system. ACTA PHYSICA SINICA, 2011, Vol. 60(6), 060203-7.

[2] Li BQ, Ma YL, The non-traveling wave solutions and novel fractal soliton for the (2+1)-dimensional Broer-Kaup equations with variable coefficients. Communications in Nonlinear Science and Numerical Simulation. 2011, Vol. 16, p. 144-149.

[3] Li BQ, Ma YL, Sun JZ, The interaction processes of the N-soliton solutions for an extended generalization of Vakhnenko equation. Applied Mathematics and Computation. 2010, Vol. 216(12), p. 3522-3535.

联系方式:

电子邮箱:libq@th.btbu.edu.cn

 

Li Bang-Qing

Name: Li Bang-Qing

Department: Department of Computer Science

Title Position: Associate Professor

Research Area: Symbolic Computation

Courses: C Language Programming, Computer Technology

Education: Ph. D in Engineering, China University of Mining & Technology, Beijing

 

Publications

1.         Novel loop-like solitons for a generalized Vakhnenko equation arising from high-frequent wave motion in a relaxing medium. Chinese Physics B. (2013), Vol. 22(3) 030511.

2.         Ma YL, Li BQ, A direct method for constructing the traveling wave solutions of a modified generalized Vakhnenko equation. Applied Mathematics and Computation. 2012, Vol. 219(4), 2212-2219.

3.         New exact solutions and novel time solitons for the dissipative Zabolotskaya-Khokhlov equation arisen from nonlinear acoustics. Z. Naturforsch. 67a, 601 -607

4.         The non-traveling wave solutions and novel fractal soliton for the (2+1)-dimensional Broer-Kaup equations with variable coefficients. Communications in Nonlinear Science and Numerical Simulation. 2011, Vol. 16, p. 144-149.

5.         A method for constructing nontraveling wave solutions for (1+1)-dimensional evolution equations. Journal of Mathematical Physics. 2010, Vol. 51(6), p. 063512-10.

6.         The interaction processes of the N-soliton solutions for an extended generalization of Vakhnenko equation. Applied Mathematics and Computation. 2010, Vol. 216(12), p. 3522-3535.

7.         New Application of the (G'/G)-Expansion Method to Excite Soliton Structures for Nonlinear Equation. Z. Naturforsch, Section A. 2010, Vol. 65a(6), p. 518-524.

8.         New application of (G'/G)-expansion method to a nonlinear evolution equation. Applied Mathematics and Computation. 2010, Vol. 216(7), p. 2137-2144.

9.         A series of abundant exact travelling wave solutions for a modified generalized Vakhnenko equation using auxiliary equation method. Applied Mathematics and Computation. 2009, Vol. 211, p. 102-107.